Step 1: Use the formula for steady-state concentration in an airshed.
\[
C = \frac{Q}{A \cdot H \cdot V}
\]
Where:
\(C\) = steady-state concentration ($\mu g/m^3$)
\(Q\) = emission rate (20 kg/s)
\(A\) = area of the airshed (10 km × 10 km = \(100 \, {km}^2 = 10^8 \, {m}^2\))
\(H\) = mixing height (1200 m)
\(V\) = wind velocity (4 m/s)
Step 2: Convert emission rate to $\mu$ g/s.
\[
Q = 20 \, {kg/s} = 20 \times 10^6 \, {g/s} = 20 \times 10^9 \, \mu{g/s}
\]
Step 3: Calculate the concentration.
\[
C = \frac{20 \times 10^9}{10^8 \times 1200 \times 4} = \frac{20 \times 10^9}{4.8 \times 10^{11}} = 410 \, \mu{g/m}^3
\]
Answer: The steady-state SO$_2$ concentration is 410 $\mu$g/m$^3$.