Step 1: Determine Number of Passes
\[
{Number of passes} = \frac{{Panel width}}{{Web depth}} = \frac{200}{0.6} = 333.\overline{3} \approx 334 { passes}
\]
Step 2: Calculate Time per Complete Cycle
Cutting time: \( \frac{1200}{5} = 240 \, {minutes} = 4 \, {hours} \)
Retreat time: \( \frac{1200}{10} = 120 \, {minutes} = 2 \, {hours} \)
Operational delay: 2 \, {hours}
\[
T_{{cycle}} = 4 \, {hours} + 2 \, {hours} + 2 \, {hours} = 8 \, {hours}
\]
Step 3: Determine Productive Capacity
Only one shift per day is considered productive for unidirectional cutting.
Available time per day: \( 8 \, {hours} \)
Cycles per day: \( \frac{8 \, {hours}}{8 \, {hours}} = 1 \, {complete cycle} \)
Productive passes per day: 1 (since each cycle completes one pass)
Step 4: Calculate Total Extraction Time
Accounting for operational efficiency of 90%:
\[
{Effective passes per day} = 0.9
\]
\[
{Days required} = \frac{334}{0.9} \approx 371 \, {days} \quad \Rightarrow \quad \boxed{370} \, {days}
\]