Step 1: Collect XH–B1 inequalities.
From the statements for paper B1: \[ \begin{aligned} \text{(i)}\ &\text{Bw} < \text{Ct} \text{(ii)}\ &\text{Dv} > \text{Ct} \text{(iii)}\ &\text{Em} < \text{Dv}, \text{Em} > \text{Fu} \text{(iv)}\ &\text{Ar} < \text{Em}, \text{Ar} > \text{Fu} \end{aligned} \]
Step 2: Chain what we can.
From (iv) and (iii): $\text{Fu} < \text{Ar} < \text{Em} < \text{Dv}$. From (ii): $\text{Ct} < \text{Dv}$. From (i) and (ii): $\text{Bw} < \text{Ct} < \text{Dv}$.
Step 3: Decide the topper in B1.
Every candidate is strictly below Dv: - $\text{Ct} < \text{Dv}$ (given), hence $\text{Bw} < \text{Ct} < \text{Dv}$.
- $\text{Em} < \text{Dv}$ (given), and $\text{Ar} < \text{Em}$, $\text{Fu} < \text{Ar}$.
Therefore, \(\boxed{\text{Dv is the highest in XH–B1}}\).





Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate