Solution:
Step 1 (Translate relations into equations).
Let the first, second and third numbers be \(A,B,C\).
\[
\frac{6}{11}A = 22% \text{ of } B = \frac{11}{50}B
\quad\quad
A = \frac{11}{50}\cdot\frac{11}{6}B=\frac{121}{300}B.
\]
Step 2 (Use the link to the third number).
Given \(B=\frac{1}{4}C\) and \(C=2400 B=600\).
Step 3 (Find the first number).
\[
A=\frac{121}{300}\times 600=242.
\]
Step 4 (Compute \(45%\) of the first number).
\[
0.45\times 242=\frac{45}{100}\times 242=\frac{9}{20}\times 242=\frac{2178}{20}=108.9.
\]
This value is not among (a)–(c), so the correct choice is “None of these”.
\[
{108.9 \ \text{(Option d: None of these)}}
\]