Step 1: Multiply numerator and denominator by the conjugate of the denominator.
The conjugate of \( 1 + \cos\theta \) is \( 1 - \cos\theta \). Multiply both numerator and denominator by \( 1 - \cos\theta \):
\[ \frac{\sin\theta}{1 + \cos\theta} = \frac{\sin\theta (1 - \cos\theta)}{(1 + \cos\theta)(1 - \cos\theta)}. \]
Step 2: Simplify the denominator using the difference of squares formula.
The denominator becomes:
\[ (1 + \cos\theta)(1 - \cos\theta) = 1 - \cos^2\theta. \]
Using the Pythagorean identity \( 1 - \cos^2\theta = \sin^2\theta \), the expression becomes:
\[ \frac{\sin\theta (1 - \cos\theta)}{\sin^2\theta}. \]
Step 3: Simplify the fraction.
Cancel one \( \sin\theta \) from the numerator and denominator:
\[ \frac{\sin\theta (1 - \cos\theta)}{\sin^2\theta} = \frac{1 - \cos\theta}{\sin\theta}. \]
Final Answer: The simplified value of \( \frac{\sin\theta}{1 + \cos\theta} \) is \( \mathbf{\frac{1 - \cos\theta}{\sin\theta}} \), which corresponds to option \( \mathbf{(3)} \).