To solve the given problem, we need to analyze the provided equations and verify which options are true.
The given equations are:
\(x - \frac{1}{x} = y\), \(y - \frac{1}{y} = z\), \(z - \frac{1}{z} = x\).
Now, let's consider the options one by one:
- Option A: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
- For \(y\), we have: \(\frac{1}{x} = x - y\)
- For \(z\), we have: \(\frac{1}{y} = y - z\)
- For \(x\), we have: \(\frac{1}{z} = z - x\)
- Option B: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=8\)
- \(\left(\frac{1}{x}\right)^2 = (x - y)^2\)
- \(\left(\frac{1}{y}\right)^2 = (y - z)^2\)
- \(\left(\frac{1}{z}\right)^2 = (z - x)^2\)
- Option C: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=-3\)
- \(\frac{1}{xy} = \frac{1}{x}\frac{1}{y} = (x-y)(y-z)\)
- \(\frac{1}{yz} = \frac{1}{y}\frac{1}{z} = (y-z)(z-x)\)
- \(\frac{1}{zx} = \frac{1}{z}\frac{1}{x} = (z-x)(x-y)\)
Conclusion: After evaluating each option, both options A and C are correct, thus the correct answer is "A and C only".