Step 1: Use the properties of logarithms:
Step 2: Simplify the expression:
\[ \log \frac{75}{16} - 2 \log \frac{5}{9} + \log \frac{32}{243} \]
Expanding using logarithm properties:
\[ \log 75 - \log 16 - 2(\log 5 - \log 9) + \log 32 - \log 243 \]
Step 3: Simplify further:
\[ \log 75 - \log 16 - 2\log 5 + 2\log 9 + \log 32 - \log 243 \]
Using logarithm multiplication property:
\[ \log \frac{75 \times 81 \times 32}{16 \times 25 \times 243} \]
Final result:
\[ \log 2 \]
If the set of all values of \( a \), for which the equation \( 5x^3 - 15x - a = 0 \) has three distinct real roots, is the interval \( (\alpha, \beta) \), then \( \beta - 2\alpha \) is equal to
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .