Step 1: Use the properties of logarithms:
Step 2: Simplify the expression:
\[ \log \frac{75}{16} - 2 \log \frac{5}{9} + \log \frac{32}{243} \]
Expanding using logarithm properties:
\[ \log 75 - \log 16 - 2(\log 5 - \log 9) + \log 32 - \log 243 \]
Step 3: Simplify further:
\[ \log 75 - \log 16 - 2\log 5 + 2\log 9 + \log 32 - \log 243 \]
Using logarithm multiplication property:
\[ \log \frac{75 \times 81 \times 32}{16 \times 25 \times 243} \]
Final result:
\[ \log 2 \]
\(\text{The number of solutions of the equation}\)\(\left(\frac{9}{x}-\frac{9}{\sqrt{x}}+2\right)\left(\frac{2}{x}-\frac{7}{\sqrt{x}}+3\right)=0\mathrm \; {is:}\)