(i)\(\frac{(2^5)^2×7^3}{8^3×7}\)
= \(\frac{(2^5)^2×7^3}{{(2×2×2)}^3×7}\) [(am)n=amn]
= \(\frac{2^{10}×7^3}{(2^3)^3×7}\) [(am)n=amn]
= 21×72=2×7×7=98
(ii)\(\frac{2^5×5^2×t^8}{10^3×t^4}\)
= \(\frac{5\times5×5^2×t^8}{{(5\times 2)}^3×t^4}\) (a×b)m=(am×bm)
= \(\frac{5^{1+1+2}×t^8}{5^3×2^3×t^4}\) (am×an=am+n)
= \(\frac{5^{4-3}×t^{8-4}}{2^3}\) (am÷an=am-n)
= \(\frac{5^1×t^4}{2×2×2}\)
= \(\frac{5t^4}{8}\)
(iii)\(\frac{3^5×10^5×25}{5^7×6^5}\)
= \(\frac{3^5×2^5×5^5×5^2}{5^7×2^5×3^5}\) (a×b)m=(am×bm)
= \(\frac{3^2×2^5×5^{5+2}}{5^7×2^5×3^5}\) (am×an=am+n)
= \(\frac{3^5×2^5×5^7}{5^7×2^5×3^5}\)
= 35-5×25-5×57-7 (am÷an=am-n)
= 30×20×50
= 1×1×1
= 1
Using laws of exponents, simplify and write the answer in exponential form:
(i) 32 × 34 × 38 (ii) 615 ÷ 610 (iii) a3 × a2 (iv) 7x×72 (v) (52) ÷ 53 (vi) 25 × 55 (vii) a4 × b4 (viii) (34)3(ix) (220 ÷ 215)×23 (x) 8t ÷ 82