Simplify each of the following expressions:
(i) (3 + √3)(2 + √2)
(ii) (3 + √3)(3 - √3)
(iii) (√5 + √2 )2
(iv) (√5 - √2)(√5 + √2)
(i) (3 + √3)(2 + √2) = 3(2 + √2) + √3 (2 + √2)
= 6 + 3√2 + 2√3 + √6
(ii) (3 + √3) (3 - √3) = (3)2 - (√3)2
= 9 - 3 = 6
(iii) (√5 + √2)2 = (√5)2 + (√2)2 + 2(√5)(√2)
= 5 + 2 + 2√10
7 + 2√10
(iv) (√5 - √2)(√5 + √2) = (√5)2 - (√2)2
= 5 - 2 = 3
For real number a, b (a > b > 0), let
\(\text{{Area}} \left\{ (x, y) : x^2 + y^2 \leq a^2 \text{{ and }} \frac{x^2}{a^2} + \frac{y^2}{b^2} \geq 1 \right\} = 30\pi\)
and
\(\text{{Area}} \left\{ (x, y) : x^2 + y^2 \geq b^2 \text{{ and }} \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \right\} = 18\pi\)
Then the value of (a – b)2 is equal to _____.
∆ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig. 7.34). Show that ∠ BCD is a right angle.
(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
A driver of a car travelling at \(52\) \(km \;h^{–1}\) applies the brakes Shade the area on the graph that represents the distance travelled by the car during the period.
Which part of the graph represents uniform motion of the car?