Route (A) – as listed: \[ \begin{aligned} 1.\ &\sim(p \supset (q \lor r)) 2.\ &\sim(\sim p \lor (q \lor r)) \text{(Material Implication)} 3.\ &\sim\sim p \ \cdot\ \sim(q \lor r) \text{(De Morgan)} 4.\ &\sim(q \lor r)\ \cdot\ \sim\sim p \text{(Commutation)} 5.\ &\sim(q \lor r) \text{(Simplification)} 6.\ &\sim q \ \cdot\ \sim r \text{(De Morgan)} 7.\ &\sim q \text{(Simplification).} \end{aligned} \]
Route (C) – an alternative valid chain: \[ \begin{aligned} 1.\ &\sim(p \supset (q \lor r)) 2.\ &\sim(\sim(q \lor r) \supset \sim p) \text{(Transposition on the embedded implication)} 3.\ &\sim(\sim\sim(q \lor r) \lor \sim p) \text{(Material Implication)} 4.\ &\sim((q \lor r) \lor \sim p) \text{(Double Negation)} 5.\ &\sim(q \lor r)\ \cdot\ \sim\sim p \text{(De Morgan)} 6.\ &\sim(q \lor r) \text{(Simplification)} 7.\ &\sim q \ \cdot\ \sim r \text{(De Morgan)} 8.\ &\sim q \text{(Simplification).} \end{aligned} \] Therefore both sequences in (A) and (C) correctly derive $\boxed{\sim q}$.
There are nine species of Impatiens (balsams) found in laterite plateaus of the northern Western Ghats, each with a distinct colour. If a plateau has exactly 6 species, then the number of possible colour combinations in the plateau is ….. (Answer in integer).
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
In the following figure, four overlapping shapes (rectangle, triangle, circle, and hexagon) are given. The sum of the numbers which belong to only two overlapping shapes is ________