The given function is f(x)= \(\frac{log x}{x}\)
\(f'(x)= \frac{x(\frac{1}{x}) - log x}{x^2} =\frac{1- logx}{x^2}\)
Now,f'(x)=0
⇒1−logx=0
⇒logx=1
⇒logx=loge
⇒x=e
Now \(f"(x)=\frac{x^2 (\frac{-1}{x})-(1-log x)(2x)}{x^4} \)
=-\(\frac{-x-2x(1-logx)}{x^4}\)
=\(\frac{-3+2log x}{x^3}\)
Now,\(f"(e)=\frac{-3+2 log e}{e^3} = (\frac{-3+2}{e^3}) = (\frac{1}{e^3}<0)\)
Therefore,by second derivative test,f is maximum at x=e.
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
It is given that at x = 1, the function x4−62x2+ax+9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41−24x−18x2