Heat released by condensation per second:
\[
\dot{Q}_{\text{hot}} = \dot{m}_h\, h_{fg}
= 150 \times 2400
= 360000\ \text{kJ/s}
\]
Effectiveness equation:
\[
\varepsilon = \frac{\dot{Q}_{\text{actual}}}{\dot{Q}_{\max}}
\]
The maximum heat transfer (cold fluid capacity is the minimum):
\[
\dot{Q}_{\max} = \dot{m}_c\, c_p (T_{h,in} - T_{c,in})
\]
Here:
\[
T_{h,in} = 200^\circ C,\quad T_{c,in} = 100^\circ C
\]
\[
T_{h,in} - T_{c,in} = 100^\circ C
\]
Actual heat transfer from condensation:
\[
\dot{Q}_{\text{actual}} = 360000\ \text{kJ/s}
\]
Effectiveness:
\[
0.9 = \frac{360000}{\dot{m}_c\, 4 \times 100}
\]
Solve for tube-side mass flow rate:
\[
0.9 = \frac{360000}{400\, \dot{m}_c}
\]
\[
400 \dot{m}_c \times 0.9 = 360000
\]
\[
360 \dot{m}_c = 360000
\]
\[
\dot{m}_c = 1000\ \text{kg/s}
\]
Thus,
\[
\boxed{1000\ \text{kg/s}}
\]