The formula for RMS velocity of an ideal gas is:
\[
u_{\text{rms}} = \sqrt{\frac{3RT}{M}}
\]
Squaring both sides:
\[
(u_{\text{rms}})^2 = \frac{3R}{M} T
\]
Comparing with the given equation \( (u_{\text{rms}})^2 = 249 T \), we get:
\[
\frac{3R}{M} = 249
\]
Substituting \( R = 8.3 \, \text{J mol}^{-1} \text{K}^{-1} \):
\[
\frac{3 \times 8.3}{M} = 249
\]
\[
\frac{24.9}{M} = 249
\]
Solving for \( M \):
\[
M = \frac{24.9}{249} = 24.9 \, \text{kg mol}^{-1}
\]
Thus, the correct answer is:
\[
\boxed{24.9}
\]