
\(\frac {P}{40}=\frac {Q}{60}\) ⋯(1)
\(\frac {P+x}{80}=\frac {Q}{20}\) ⋯(2)
\(\frac {P}{P+x}×\frac {80}{40}=\frac {20}{60}\)
\(\frac {4}{4+x}×2=\frac 13\)
\(24 = 4 + x\)
\(x = 20\)
So, the amswer is \(20\).
A 5 $\Omega$ resistor and a 10 $\Omega$ resistor are connected in parallel. What is the equivalent resistance of the combination?
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
Resistance is the measure of opposition applied by any object to the flow of electric current. A resistor is an electronic constituent that is used in the circuit with the purpose of offering that specific amount of resistance.
R=V/I
In this case,
v = Voltage across its ends
I = Current flowing through it
All materials resist current flow to some degree. They fall into one of two broad categories:
Resistance measurements are normally taken to indicate the condition of a component or a circuit.