If the molar conductivity ($\Lambda_m$) of a 0.050 mol $L^{–1}$ solution of a monobasic weak acid is 90 S $cm^{2} mol^{–1}$, its extent (degree) of dissociation will be:
[Assume: $\Lambda^0$ = 349.6 S $cm^{2} mol^{–1}$ and $\Lambda^0_{\text{acid}}$ = 50.4 S$ cm^{2} mol^{–1}$]
For the reaction \( \text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) \) at 298 K, the enthalpy change \( \Delta H = -92.4 \, \text{kJ/mol} \). What happens to the equilibrium when temperature is increased?