Step 1: Analyze inner expression.
\[ u=\frac{x^2}{1+x^2} \] Since \(x^2\ge 0\), we have:
\[ 0\le \frac{x^2}{1+x^2} <1 \] because denominator is always larger than numerator unless \(x\to\infty\).
So range of \(u\) is:
\[ u\in[0,1) \]
Step 2: Apply \(\sin^{-1}\) to this interval.
\[ y=\sin^{-1}(u) \] Since \(\sin^{-1}\) is increasing on \([0,1]\):
\[ u\in[0,1)\Rightarrow y\in\left[\sin^{-1}(0),\sin^{-1}(1)\right) \] \[ y\in\left[0,\frac{\pi}{2}\right) \]
Final Answer: \[ \boxed{\left[0,\frac{\pi}{2}\right)} \]
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to: