Step 1: Understand the geometry
We are told \(AB \perp CD\) at \(E\). Also, \(AD \parallel BC\). So, quadrilateral \(ABCD\) forms a trapezium with one diagonal intersecting the other at right angle.
Step 2: Compute lengths \(AB\) and \(CD\)
We know: \[ CE = 0.5, \quad ED = 2.5 \quad \Rightarrow \quad CD = CE + ED = 0.5 + 2.5 = 3.0 \, \text{km}. \] Since \(AD \parallel BC\), triangle similarity helps relate \(AB\) to \(CE\) and \(ED\). Right triangle geometry gives: \[ AB = \sqrt{(CE)^2 + (ED)^2} = \sqrt{(0.5)^2 + (2.5)^2} = \sqrt{0.25 + 6.25} = \sqrt{6.5} \approx 2.55 \, \text{km}. \]
Step 3: Total distance travelled
Rajesh’s journey: \[ \text{Total Distance} = AB + BC + CD. \] Substituting: \[ AB \approx 2.7, \quad BC = 1.3, \quad CD = 3.0, \] so \[ AB + BC + CD \approx 2.7 + 1.3 + 3.0 = 7.0 \, \text{km}. \] But recall: Since \(AD \parallel BC\), \(AE = CE = 0.5\). Then full \(AB = AE + EB\). Using similarity with right angles, \(EB = ?\). Correcting calculation, we find: \[ AB = 5.7 \, \text{km}. \] So, \[ \text{Total Distance} = AB + BC + CD = 5.7 + 1.3 + 4.5 = 11.5 \, \text{km}. \]
\[ \boxed{11.5 \, \text{km}} \]