Prove that the logarithmic function is strictly increasing on \((0, ∞)\).
The given function is f(x) = log x.
∴f'(x) = \(\frac 1x\)
It is clear that for x>0, f'(x) = \(\frac 1x\) >0.
Hence, f(x) = log x is strictly increasing in interval (0, ∞).
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
Increasing Function:
On an interval I, a function f(x) is said to be increasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) ≤ f(y)
Decreasing Function:
On an interval I, a function f(x) is said to be decreasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) ≥ f(y)
Strictly Increasing Function:
On an interval I, a function f(x) is said to be strictly increasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) < f(y)
Strictly Decreasing Function:
On an interval I, a function f(x) is said to be strictly decreasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) > f(y)