Step 1: Proof of Integral Identity
Using the substitution \( u = 2a - x \), we get:
\[
du = -dx.
\]
Changing limits:
\[
\int_0^a f(2a - x) dx = \int_{2a}^{a} f(u) (-du) = \int_a^{2a} f(u) du.
\]
Since:
\[
\int_0^{2a} f(x) dx = \int_0^a f(x) dx + \int_a^{2a} f(x) dx,
\]
we conclude:
\[
\int_0^{2a} f(x) dx = \int_0^a f(x) dx + \int_0^a f(2a - x) dx.
\]
Step 2: Apply to Sine Function
For \( f(x) = \sin x \), let \( a = \frac{\pi}{2} \), so \( 2a = \pi \):
\[
\int_0^\pi \sin x dx = \int_0^{\pi/2} \sin x dx + \int_0^{\pi/2} \sin (\pi - x) dx.
\]
Since \( \sin (\pi - x) = \sin x \):
\[
\int_0^\pi \sin x dx = 2 \int_0^{\pi/2} \sin x dx.
\]
Final Verification:
\[
\int_0^\pi \sin x dx = [-\cos x]_0^\pi = -\cos \pi + \cos 0 = 1 + 1 = 2.
\]
\[
\int_0^{\pi/2} \sin x dx = [-\cos x]_0^{\pi/2} = -\cos (\pi/2) + \cos 0 = 0 + 1 = 1.
\]
\[
2 \times 1 = 2.
\]