Question:

Probability Distribution of Random Variable X

X123
P(X)\(\frac{11}{30}\)\(\frac{1}{15}\)\(\frac{10}{30}\)\(\frac{3\lambda}{10}\)\(\frac{1}{15}\)\(\frac{1}{10}\)

(i) Calculate \( \lambda \), if \( E(X) = 3.2 \)
(ii) Find P(X > 1).

Updated On: Jun 16, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) Find \( \lambda \) using total probability

We use the fact that the total sum of all probabilities must equal 1:

\[ \frac{11}{30} + \frac{1}{15} + \frac{10}{30} + \frac{3\lambda}{10} + \frac{1}{15} + \frac{1}{10} = 1 \]

Convert all terms to have a denominator of 30:

\[ \frac{11}{30} + \frac{2}{30} + \frac{10}{30} + \frac{9\lambda}{30} + \frac{2}{30} + \frac{3}{30} = 1 \]

Simplify the constants:

\[ \frac{28 + 9\lambda}{30} = 1 \]

Multiply both sides by 30:

\[ 28 + 9\lambda = 30 \Rightarrow 9\lambda = 2 \Rightarrow \lambda = \frac{2}{9} \]

Therefore, \( \lambda = \frac{2}{9} \)


(ii) Find \( P(X > 1) \)

This corresponds to \( X = 2, 3, 2\lambda, 3\lambda, 4\lambda \):

\[ P(X > 1) = P(X=2) + P(X=3) + P(X=2\lambda) + P(X=3\lambda) + P(X=4\lambda) \]

Substitute the values:

\[ P(X > 1) = \frac{1}{15} + \frac{10}{30} + \frac{3 \times \lambda}{10} + \frac{1}{15} + \frac{1}{10} \]

Now substitute \( \lambda = \frac{2}{9} \):

\[ P(X > 1) = \frac{1}{15} + \frac{1}{3} + \frac{6}{30} + \frac{1}{15} + \frac{1}{10} \]

Convert to common denominator (LCM = 30):

\[ P(X > 1) = \frac{2}{30} + \frac{10}{30} + \frac{6}{30} + \frac{2}{30} + \frac{3}{30} = \frac{23}{30} \]

Therefore, \( P(X > 1) = \frac{23}{30} \)

Was this answer helpful?
0
0