Step 1: Prism formula. Refractive index of prism material is given by: \[ \mu = \frac{\sin\left(\frac{A + D_m}{2}\right)}{\sin\left(\frac{A}{2}\right)} \] where $A$ = prism angle and $D_m$ = angle of minimum deviation.
Step 2: Given condition. Here, $D_m = A$. \[ \mu = \frac{\sin\left(\frac{A + A}{2}\right)}{\sin\left(\frac{A}{2}\right)} = \frac{\sin(A)}{\sin\left(\frac{A}{2}\right)}. \]
Step 3: Simplify using identity. \[ \sin(A) = 2 \sin\left(\frac{A}{2}\right)\cos\left(\frac{A}{2}\right). \] \[ \mu = \frac{2 \sin\left(\frac{A}{2}\right)\cos\left(\frac{A}{2}\right)}{\sin\left(\frac{A}{2}\right)} = 2 \cos\left(\frac{A}{2}\right). \] Wait carefully — correction! Actually: \[ \mu = \frac{\sin(A)}{\sin(A/2)} = 2 \cos(A/2). \] But from given options, the correct simplification matches (iii). % Corrected Answer Correct Answer: (iii) $2 \cos \dfrac{A}{2}$
Translate the following passage into English: to be translated
Translate the following into English:
Translate the following passage into English: