Step 1: Equation of line
Given line is
\[
x - y - 2 = 0
\]
Step 2: Points \(A\) and \(B\) lie on the line at distance 4 from \(P\)
Using distance formula and parametric form of line, find \(A\) and \(B\).
If \(P = (6,4)\), direction vector of line is \((1,1)\).
Points \(A\) and \(B\) can be written as
\[
A = (6 + t, 4 + t), \quad B = (6 - t, 4 - t)
\]
Distance \(PA = PB = 4\) gives
\[
\sqrt{t^2 + t^2} = 4 \Rightarrow \sqrt{2} t = 4 \Rightarrow t = \frac{4}{\sqrt{2}} = 2 \sqrt{2}
\]
Step 3: Calculate sum of squares
\[
\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = (6 + 2 \sqrt{2})^2 + (4 + 2 \sqrt{2})^2 + (6 - 2 \sqrt{2})^2 + (4 - 2 \sqrt{2})^2
\]
Calculate each term:
\[
(6 + 2 \sqrt{2})^2 = 36 + 24 \sqrt{2} + 8 = 44 + 24 \sqrt{2}
\]
\[
(4 + 2 \sqrt{2})^2 = 16 + 16 \sqrt{2} + 8 = 24 + 16 \sqrt{2}
\]
\[
(6 - 2 \sqrt{2})^2 = 36 - 24 \sqrt{2} + 8 = 44 - 24 \sqrt{2}
\]
\[
(4 - 2 \sqrt{2})^2 = 16 - 16 \sqrt{2} + 8 = 24 - 16 \sqrt{2}
\]
Sum all:
\[
(44 + 24 \sqrt{2}) + (24 + 16 \sqrt{2}) + (44 - 24 \sqrt{2}) + (24 - 16 \sqrt{2}) = (44 + 24 + 44 + 24) + (24 \sqrt{2} + 16 \sqrt{2} - 24 \sqrt{2} - 16 \sqrt{2}) = 136 + 0 = 136
\]