Concept:
Photoelectric equation:
\[
E = h\nu = \phi_0 + K_{\max}
\]
Stopping potential:
\[
K_{\max} = eV_0
\]
Constants:
\[
h = 6.63 \times 10^{-34} \, \text{J·s}, \quad
1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J}
\]
Step 1: Energy of photon.
\[
E = h\nu = 6.63 \times 10^{-34} \times 6.4 \times 10^{14}
\]
\[
E = 4.24 \times 10^{-19} \, \text{J}
\]
Convert to eV:
\[
E = \frac{4.24 \times 10^{-19}}{1.6 \times 10^{-19}}
= 2.65 \, \text{eV}
\]
Step 2: Maximum kinetic energy.
\[
K_{\max} = E - \phi_0
= 2.65 - 1.96
= 0.69 \, \text{eV}
\]
Step 3: Stopping potential.
\[
K_{\max} = eV_0
\]
Since kinetic energy is in eV:
\[
V_0 = 0.69 \, \text{V}
\]
Final Answers:
[(a)] Energy of photon = \( 2.65 \, \text{eV} \)
[(b)] Maximum kinetic energy = \( 0.69 \, \text{eV} \)
[(c)] Stopping potential = \( 0.69 \, \text{V} \)