Perform the arithmetic addition of the two decimal numbers given in List-I using the signed-complement system. Match the corresponding output of List-I with binary number representation given in List-II.
\[\begin{array}{|c|c|}\hline \text{List-I} & \text{List-II} \\ \hline \text{(A) +6, +13} & \text{(I) 00000111} \\ \hline \text{(B) -6, +13} & \text{(II) 00010011} \\ \hline \text{(C) +6, -13} & \text{(III) 11101011} \\ \hline \text{(D) +6, -13} & \text{(IV) 11111101} \\ \hline \end{array}\]
Step 1: Converting Decimal Numbers to Signed Binary.
- For **+6** and **+13**, we convert them to signed 8-bit binary:
- \(+6 = 00000110_2\)
- \(+13 = 00001101_2\)
- For **-6** and **+13**, we convert them using two's complement:
- \(-6 = 11111010_2\)
- \(+13 = 00001101_2\)
- For **+6** and **-13**, we convert **-13** using two's complement:
- \(+6 = 00000110_2\)
- \(-13 = 11110011_2\)
- For **-6** and **-13**, we convert both using two's complement:
- \(-6 = 11111010_2\)
- \(-13 = 11110011_2\)
Step 2: Conclusion.
The correct mapping is:
- (A) +6, +13 → **(I)** 00000111
- (B) -6, +13 → **(II)** 00001011
- (C) +6, -13 → **(III)** 11110101
- (D) -6, -13 → **(IV)** 11111100
In C language, mat[i][j] is equivalent to: (where mat[i][j] is a two-dimensional array)
Suppose a minimum spanning tree is to be generated for a graph whose edge weights are given below. Identify the graph which represents a valid minimum spanning tree?
\[\begin{array}{|c|c|}\hline \text{Edges through Vertex points} & \text{Weight of the corresponding Edge} \\ \hline (1,2) & 11 \\ \hline (3,6) & 14 \\ \hline (4,6) & 21 \\ \hline (2,6) & 24 \\ \hline (1,4) & 31 \\ \hline (3,5) & 36 \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match LIST-I with LIST-II
Choose the correct answer from the options given below:
Consider the following set of processes, assumed to have arrived at time 0 in the order P1, P2, P3, P4, and P5, with the given length of the CPU burst (in milliseconds) and their priority:
\[\begin{array}{|c|c|c|}\hline \text{Process} & \text{Burst Time (ms)} & \text{Priority} \\ \hline \text{P1} & 10 & 3 \\ \hline \text{P2} & 1 & 1 \\ \hline \text{P3} & 4 & 4 \\ \hline \text{P4} & 1 & 2 \\ \hline \text{P5} & 5 & 5 \\ \hline \end{array}\]
Using priority scheduling (where priority 1 denotes the highest priority and priority 5 denotes the lowest priority), find the average waiting time.