Perform the arithmetic addition of the two decimal numbers given in List-I using the signed-complement system. Match the corresponding output of List-I with binary number representation given in List-II.
\[\begin{array}{|c|c|}\hline \text{List-I} & \text{List-II} \\ \hline \text{(A) +6, +13} & \text{(I) 00000111} \\ \hline \text{(B) -6, +13} & \text{(II) 00010011} \\ \hline \text{(C) +6, -13} & \text{(III) 11101011} \\ \hline \text{(D) +6, -13} & \text{(IV) 11111101} \\ \hline \end{array}\]
Step 1: Converting Decimal Numbers to Signed Binary.
- For **+6** and **+13**, we convert them to signed 8-bit binary:
- \(+6 = 00000110_2\)
- \(+13 = 00001101_2\)
- For **-6** and **+13**, we convert them using two's complement:
- \(-6 = 11111010_2\)
- \(+13 = 00001101_2\)
- For **+6** and **-13**, we convert **-13** using two's complement:
- \(+6 = 00000110_2\)
- \(-13 = 11110011_2\)
- For **-6** and **-13**, we convert both using two's complement:
- \(-6 = 11111010_2\)
- \(-13 = 11110011_2\)
Step 2: Conclusion.
The correct mapping is:
- (A) +6, +13 → **(I)** 00000111
- (B) -6, +13 → **(II)** 00001011
- (C) +6, -13 → **(III)** 11110101
- (D) -6, -13 → **(IV)** 11111100