Question:

Parthenocarpic tomato fruits can be produced by-

Updated On: Jul 28, 2022
  • Treating the plants with phenylmercuric acetate
  • Removing androecium of flowers before pollen grains are released
  • Treating the plants with low concentrations of gibberellic acid and auxins
  • Raising the plants from vernalized seeds
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Development of fruits without fertilization is called parthenocarpy and such fruits are called parthenocarpic fruits. Parthenocarpic fruits are seedless. A flower is emasculated and auxins are applied to the stigma of the flower, it forms a parthenocarpic fruit. For parthenocarpy induction by auxins, these should be applied after anthesis (first opening of flower) and by gibberellins, these should be applied earlier i.e., at anthesis.
Was this answer helpful?
0
0

Concepts Used:

Plant Growth Regulators

What is a plant growth regulator?

Plant growth regulators (PGRs) are chemicals used to modify plant growth such as increasing branching, suppressing shoot growth, increasing return bloom, removing excess fruit, or altering fruit maturity.

Types of Plant Growth:

There are the following types of plant growth.

  • Primary and Secondary Growth: The growth of a plant is termed primary when the same happens through the mitotic division of the meristematic cells which are present at the root and the shoot of the plants. 

Whereas, the secondary growth in a plant takes place through the division of the secondary meristem, which, in turn increases the diameter of the body of the plants.

  • Primary and Secondary Plant Growth
  • Unlimited Growth
  • Limited Growth
  • Vegetative Growth
  • Reproductive Growth

The five groups of plant growth regulators used in fruit crops include:

  1. Auxins: Auxins are one of the most important plant hormones. The chief naturally occurring auxin is indole-3 acetic acid – IAA and other related compounds.
  2. Gibberellins: Gibberellins are an extensive chemical family based on the ent-gibberellane structure. The first gibberellin to be discovered was gibberellic acid. Now there are more than 100 types of gibberellins.
  3. Cytokinins: These are produced in the regions where cell division occurs; mostly in the roots and shoots. They help in the production of new leaves, lateral shoot growth, chloroplasts in leaves etc.
  4. Absicisic Acid: Absicsic acid controls the dormancy of buds and seeds, inhibits shoot growth and is involved in regulating water loss from plants.
  5. Ethylene: Ethylene is a simple, gaseous plant growth regulator, synthesised by most of the plant organs includes ripening fruits and ageing tissues.