Step 1: Convert the Given Equation to Standard Form
The given equation of the circle is:
\[
2x^2 + 2y^2 = 9.
\]
Dividing throughout by 2:
\[
x^2 + y^2 = \frac{9}{2}.
\]
This represents a circle centered at \( (0,0) \) with radius:
\[
r = \sqrt{\frac{9}{2}} = \frac{3}{\sqrt{2}}.
\]
Step 2: Standard Parametric Equations of a Circle
The standard parametric form of a circle \( x^2 + y^2 = r^2 \) is:
\[
x = r \cos\theta, \quad y = r \sin\theta.
\]
Substituting \( r = \frac{3}{\sqrt{2}} \):
\[
x = \frac{3}{\sqrt{2}} \cos\theta, \quad y = \frac{3}{\sqrt{2}} \sin\theta.
\]
However, if we switch sine and cosine:
\[
x = \frac{3}{\sqrt{2}} \sin\theta, \quad y = \frac{3}{\sqrt{2}} \cos\theta.
\]
This matches option (C).
Step 3: Conclusion
Thus, the correct answer is:
\[
\mathbf{x = \frac{3}{\sqrt{2}} \sin\theta, \quad y = \frac{3}{\sqrt{2}} \cos\theta}.
\]