>
questions
List of practice Questions
A pair of dice is thrown simultaneously. If \( X \) denotes the absolute difference of the numbers appearing on top of the dice, then find the probability distribution of \( X \).
CBSE CLASS XII
Mathematics
Conditional Probability
Find:
\[ \int x^2 \log(x^2 - 1) \, dx. \]
CBSE CLASS XII
Mathematics
Integration
(a) If \( y = (\log x)^2 \), prove that \( x^2 y'' + x y' = 2 \).
CBSE CLASS XII
Mathematics
Differentiation
Evaluate:
\[ \int_{-2}^{2} \sqrt{\frac{2 - x}{2 + x}} \, dx. \]
CBSE CLASS XII
Mathematics
Integration
Find:
\[ \int \frac{1}{x \left[(\log x)^2 - 3 \log x - 4\right]} \, dx. \]
CBSE CLASS XII
Mathematics
Integration
Find the particular solution of the differential equation given by:
\[ 2xy + y^2 - 2x^2 \frac{dy}{dx} = 0; \quad y = 2, \, \text{when } x = 1. \]
CBSE CLASS XII
Mathematics
Differential Equations
(a) Find the value of
\( \sin^{-1}\left( -\frac{1}{2} \right) + \cos^{-1}\left( -\frac{\sqrt{3}}{2} \right) + \cot^{-1}\left( \tan \frac{4\pi}{3} \right) \).
CBSE CLASS XII
Mathematics
Functions
Let \( E \) be an event of a sample space \( S \) of an experiment, then \( P(S | E) \) is:
CBSE CLASS XII
Mathematics
Conditional Probability
Assertion (A):
For any symmetric matrix \( A \), \( B'A B \) is a skew-symmetric matrix.
Reason (R):
A square matrix \( P \) is skew-symmetric if \( P' = -P \).
CBSE CLASS XII
Mathematics
Matrix
Assertion (A):
For two non-zero vectors \( \vec{a} \) and \( \vec{b} \), \( \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \).
Reason (R):
For two non-zero vectors \( \vec{a} \) and \( \vec{b} \), \( \vec{a} \times \vec{b} = -\vec{b} \times \vec{a} \).
CBSE CLASS XII
Mathematics
Vector Algebra
Determine whether the function \( f(x) = x^2 - 6x + 3 \) is increasing or decreasing in \( [4, 6] \).
CBSE CLASS XII
Mathematics
Differentiation
(a) Find the value of
\( \sin^{-1}\left( -\frac{1}{2} \right) + \cos^{-1}\left( -\frac{\sqrt{3}}{2} \right) + \cot^{-1}\left( \tan \frac{4\pi}{3} \right) \).
CBSE CLASS XII
Mathematics
Differentiation
The function \( f(x) = x^3 - 3x^2 + 12x - 18 \) is:
CBSE CLASS XII
Mathematics
Functions
The anti-derivative of \( \sqrt{1 + \sin 2x}, \, x \in \left[ 0, \frac{\pi}{4} \right] \) is:
CBSE CLASS XII
Mathematics
Integration
The differential equation \( \frac{dy}{dx} = F(x, y) \) will not be a homogeneous differential equation, if \( F(x, y) \) is:
CBSE CLASS XII
Mathematics
Differential Equations
For any two vectors \( \vec{a} \) and \( \vec{b} \), which of the following statements is always true?
CBSE CLASS XII
Mathematics
Vectors
The coordinates of the foot of the perpendicular drawn from the point \( (0, 1, 2) \) on the \( x \)-axis are given by:
CBSE CLASS XII
Mathematics
Properties of Lines
The common region determined by all the constraints of a linear programming problem is called:
CBSE CLASS XII
Mathematics
Linear Programming
If a line makes an angle of \( 30^\circ \) with the positive direction of x-axis, \( 120^\circ \) with the positive direction of y-axis, then the angle which it makes with the positive direction of z-axis is:
CBSE CLASS XII
Mathematics
Trigonometric Ratios
If the sum of all the elements of a \( 3 \times 3 \) scalar matrix is 9, then the product of all its elements is:
CBSE CLASS XII
Mathematics
Matrix
Let \( f : \mathbb{R}_+ \to [-5, \infty) \) be defined as \( f(x) = 9x^2 + 6x - 5 \), where \( \mathbb{R}_+ \) is the set of all non-negative real numbers. Then, \( f \) is:
CBSE CLASS XII
Mathematics
Functions
If \( F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \) and \( [F(x)]^2 = F(kx) \), then the value of \( k \) is:
CBSE CLASS XII
Mathematics
Matrix
Find the value of \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}\left[\sin\left(-\frac{\pi}{2}\right)\right]. \)
CBSE CLASS XII
Mathematics
Trigonometric Identities
If \( A = \begin{bmatrix} 1 & \cot x \\ -\cot x & 1 \end{bmatrix} \), show that \( A^T A^{-1} = \begin{bmatrix} -\cos 2x & -\sin 2x \\ \sin 2x & -\cos 2x \end{bmatrix}. \)
CBSE CLASS XII
Mathematics
Matrix
If \( M \) and \( m \) denote the local maximum and local minimum values of the function \( f(x) = x + \frac{1}{x} \) (\( x \neq 0 \)) respectively, find the value of \( M - m \).
CBSE CLASS XII
Mathematics
Integration
Prev
1
...
7924
7925
7926
7927
7928
...
8517
Next