>
questions
List of practice Questions
If
$\sin \, 4A - \cos \, 2A = \cos \, 4A- \sin \, 2A \left( 0 < A < \frac{\pi}{4} \right)$
then the value of tan 4A =
Mathematics
Trigonometric Functions
If
$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0$
, then general value of
$\theta$
is
Mathematics
Trigonometric Functions
If
$\sin^{-1} x + \sin^{-1}y + \sin^{-1} z = \frac{3 \pi}{2} $
then the value of
$x^{100} + y^{100} + z^{100} - \frac{ 3}{x^{101} + y^{101} + z^{101}} $
is
Mathematics
Inverse Trigonometric Functions
If
$\sin^{-1}x +\sin^{-1}y+\sin^{-1}z=\pi $
, then
$x^4+y^4+z^4+4x^2\,y^2\,z^2=K(x^2\,y^2+y^2\,z^2+z^2\,x^2)$
, where K =
Mathematics
Inverse Trigonometric Functions
If
$\sin^2 \, \theta + 3 \, \cos \, \theta - 2 = 0$
, then
$\cos^3 \, \theta + \sec^3 \, \theta$
is equal to
Mathematics
Trigonometric Functions
$ If sin 4A - cos^2 A = cos 4A - sin 2A,\left(0< A
Mathematics
Trigonometric Functions
If
$\sin^{-1} \alpha = \tan^{-1} \frac{3}{4}$
, then
$\alpha $
equals :
Mathematics
Inverse Trigonometric Functions
If
$\sin^{-1}\left(\frac{5}{x}\right)+\sin^{-1}\frac{12}{x}=\frac{\pi}{2}$
,then x =
Mathematics
Inverse Trigonometric Functions
If
$\sin^{-1}x-\cos^{-1} x=\frac{\pi}{6}, $
then
$x$
is
Mathematics
Inverse Trigonometric Functions
If
$\sin^{-1}\left(\frac{x}{13}\right)+cosec^{-1}\left(\frac{13}{12}\right)=\frac{\pi}{2}$
, then the value of x is
Mathematics
Inverse Trigonometric Functions
If
$\sec \, \alpha$
and
$cosec \, \alpha$
are the roots of the equation
$x^2 - px + q = 0, $
then
Mathematics
Trigonometric Functions
If
$\sec \, \theta = x + \frac{1}{4x}, x \in R , x \neq 0$
, then the value of
$\sec \, \theta + \tan \, \theta $
is
Mathematics
Trigonometric Functions
If radius of earth shrinks by
$1 %$
when mass remains same, the acceleration due to gravity on the surface of earth would
Physics
Gravitation
If S is the sum to infinity of a G.P. whose first term is a, then the sum of the first n terms is
Mathematics
Sequence and series
If
$S_m$
denotes the sum of first
$m$
terms of a
$G.P. $
of
$n$
terms with common ratio
$r$
, then the sum of their products taken two by two is
Mathematics
Sequence and series
If
$PSQ$
is the focal chord of the parabola
$y^2 = 8x$
such that
$ SP = 6$
then the length
$SQ $
is
Mathematics
Conic sections
If
$R$
and
$H$
represent horizontal range and maximum height of the projectile, then the angle of projection with the horizontal is
Physics
Motion in a plane
If R is the relation less than' from A={1, 2, 3, 4, 5} to B={1, 4}, the set of ordered pairs corresponding to R, then the inverse of R is
Mathematics
Relations and functions
If pressure of
$CO_2$
(real gas) in a container is given by
$p = \frac{RT}{2V - b} - \frac{9}{4b^2},$
then mass of the gas in container ts
Physics
kinetic theory
If p and q are true statement and r, s are false statements then the truth value of
$\sim[(p \wedge \sim r) \vee (\sim q \vee s)]$
is
Mathematics
mathematical reasoning
If p be the length of the perpendicular from the origin on the straight line x + 2by = 2p ,then what is the value of b?
Mathematics
Straight lines
if P =
$\begin{bmatrix}i&0&-i\\ 0&-i&i\\ -i&i&0\end{bmatrix}$
and
$Q=\begin{bmatrix}-i&i\\ 0&0\\ i&-i\end{bmatrix}$
then
$PQ$
is equal to
Mathematics
Matrices
If
$P(A \cup B) = 0.8, P(A \cap B) = 0.3 $
then
$P (\bar{A} ) + P(\bar{B})$
=
Mathematics
Conditional Probability
If one mole of a monatomic gas
$(\gamma = 5/3)$
is mixed with one mole of a diatomic gas
$(\gamma = 7/3)$
, the value of g for the mixture is
Physics
kinetic theory
If one person handshakes with the other only once and number of handshakes is
$66$
, then number of persons will be
Mathematics
permutations and combinations
Prev
1
...
5629
5630
5631
5632
5633
...
5760
Next