Let \( X_1, X_2, X_3 \) be a random sample from \( N(\mu_1, \sigma_1^2) \) distribution and \( Y_1, Y_2, Y_3 \) be a random sample from \( N(\mu_2, \sigma_2^2) \) distribution. Also, assume that \( (X_1, X_2, X_3) \) and \( (Y_1, Y_2, Y_3) \) are independent. Let the observed values of \( \sum_{i=1}^{3} \left[ X_i - \frac{1}{3} (X_1 + X_2 + X_3) \right]^2 \) and \( \sum_{i=1}^{3} \left[ Y_i - \frac{1}{3} (Y_1 + Y_2 + Y_3) \right]^2 \) be 1 and 5, respectively. Then the solution for the 90% confidence interval for \( \mu_1 - \mu_2 \) equals ................