Let f and g be twice differentiable even functions on (–2, 2) such that
\(ƒ(\frac{1}{4})=0, ƒ(\frac{1}{2})=0, ƒ(1) =1\) and \(g(\frac{3}{4}) = 0 , g(1)=2\)
.Then, the minimum number of solutions of f(x)g′′(x) + f′(x)g′(x) = 0 in (–2, 2) is equal to_____.