Overspeeding increases fuel consumption and decreases fuel economy as a result of tyre rolling friction and air resistance. While vehicles reach optimal fuel economy at different speeds, fuel mileage usually decreases rapidly at speeds above 80 km/h.
The relation between fuel consumption \( F \) (liters per 100 km) and speed \( V \) (km/h) under some constraints is given as:
\[ F = \frac{V^2}{500} - \frac{V}{4} + 14. \]
On the basis of the above information, answer the following questions:
(i) Find \( F \), when \( V = 40 \, \text{km/h} \).
(ii) Find \( \frac{dF}{dV} \).
(iii)(a) Find the speed \( V \) for which fuel consumption \( F \) is minimum.
OR
(b) Find the quantity of fuel required to travel \( 600 \, \text{km} \) at the speed \( V \) at which \( \frac{dF}{dV} = -0.01 \).
Let \( f(x) = \log x \) and \[ g(x) = \frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1} \] Then the domain of \( f \circ g \) is:
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
Study the given molecular structure of double-stranded polynucleotide chain of DNA and answer the questions that follow. 
(a) How many phosphodiester bonds are present in the given double-stranded polynucleotide chain?
(b) How many base pairs are there in each helical turn of double helix structure of DNA? Also write the distance between a base pair in a helix.
(c) In addition to H-bonds, what confers additional stability to the helical structure of DNA?
