The maximum hoisting speed \( V = 10 \, \text{m/s} \), and the hoisting depth \( H = 620 \, \text{m} \). The time to reach constant speed is given by:
\[
t_{\text{accel}} = \frac{V}{a} = \frac{10}{1} = 10 \, \text{s}
\]
The time to decelerate is the same: \( t_{\text{decel}} = 10 \, \text{s} \). So, the total time for the hoist is:
\[
t_{\text{hoist}} = \frac{H}{V} + t_{\text{accel}} + t_{\text{decel}} = \frac{620}{10} + 10 + 10 = 62 + 20 = 82 \, \text{s}
\]
The total time per cycle (loading + unloading):
\[
t_{\text{cycle}} = t_{\text{hoist}} + t_{\text{loading}} + t_{\text{unloading}} = 82 + 120 + 60 = 262 \, \text{s}
\]
The number of cycles per day (assuming 24 hours of operation):
\[
N_{\text{cycles}} = \frac{24 \times 3600}{t_{\text{cycle}}} = \frac{86400}{262} \approx 330.5
\]
The total daily hoisted tonnage is:
\[
\text{Daily Capacity} = N_{\text{cycles}} \times \text{Pay Load} \times \text{Utilization}
\]
\[
= 330.5 \times 7 \times 0.70 = 1617.45 \, \text{tonnes}
\]
Rounded to the nearest integer:
\[
\boxed{1617} \, \text{tonnes}
\]