First, calculate the theoretical discharge:
The area of the ram is:
\[
A = \pi \left(\frac{d}{2}\right)^2 = \pi \left(\frac{150}{2}\right)^2 = 17671.46 \, \text{mm}^2
\]
The displacement per stroke is:
\[
\text{Displacement} = A \times \text{Stroke length} = 17671.46 \times 300 = 5301438 \, \text{mm}^3 = 5.30 \, \text{litres}
\]
The theoretical discharge is:
\[
Q_{\text{theoretical}} = \text{Displacement} \times \text{RPM} = 5.30 \times 120 = 636 \, \text{litres/min}
\]
Now, actual discharge is given as 10 litres per second, which is equivalent to:
\[
Q_{\text{actual}} = 10 \times 60 = 600 \, \text{litres/min}
\]
Finally, the volumetric efficiency \( \eta \) is:
\[
\eta = \frac{Q_{\text{actual}}}{Q_{\text{theoretical}}} \times 100 = \frac{600}{636} \times 100 = 94.34%
\]
Thus, the volumetric efficiency of the pump is \( \boxed{94.3%} \).