Step 1: Recall the logarithmic definition of \( \operatorname{Tanh}^{-1}(x) \).
The definition of the inverse hyperbolic tangent function is: \[ \operatorname{Tanh}^{-1}(x) = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right), \quad \text{for } |x|<1 \] In this problem, \( x = \sin\theta \). So we must have \( |\sin\theta| < 1 \), which implies \( \theta \neq \pm \frac{\pi}{2} + k\pi \) for any integer \( k \). Substitute \( x = \sin\theta \) into the definition: \[ \operatorname{Tanh}^{-1}(\sin\theta) = \frac{1}{2} \ln\left(\frac{1+\sin\theta}{1-\sin\theta}\right) \] Step 2: Manipulate the expression inside the logarithm.
To simplify the fraction inside the logarithm, multiply the numerator and the denominator by \( (1+\sin\theta) \): \[ \operatorname{Tanh}^{-1}(\sin\theta) = \frac{1}{2} \ln\left(\frac{(1+\sin\theta)(1+\sin\theta)}{(1-\sin\theta)(1+\sin\theta)}\right) \] \[ = \frac{1}{2} \ln\left(\frac{(1+\sin\theta)^2}{1^2 - \sin^2\theta}\right) \] Recall the trigonometric identity \( 1 - \sin^2\theta = \cos^2\theta \): \[ = \frac{1}{2} \ln\left(\frac{(1+\sin\theta)^2}{\cos^2\theta}\right) \] This can be written as: \[ = \frac{1}{2} \ln\left(\left(\frac{1+\sin\theta}{\cos\theta}\right)^2\right) \] Using the logarithm property \( n \ln A = \ln A^n \): \[ = \ln\left(\frac{1+\sin\theta}{\cos\theta}\right) \] Separate the terms in the fraction: \[ = \ln\left(\frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta}\right) \] Recall that \( \frac{1}{\cos\theta} = \sec\theta \) and \( \frac{\sin\theta}{\cos\theta} = \tan\theta \): \[ \operatorname{Tanh}^{-1}(\sin\theta) = \ln(\sec\theta + \tan\theta) \] Step 3: Compare the result with the logarithmic definitions of other inverse hyperbolic functions.
Let's consider the relevant inverse hyperbolic functions from the options:
\( \operatorname{Sinh}^{-1}(x) = \ln(x + \sqrt{x^2+1}) \) \( \operatorname{Cosh}^{-1}(x) = \ln(x + \sqrt{x^2-1}) \), for \( x \ge 1 \).
Let's test option (4), which is \( \operatorname{Cosh}^{-1}(\sec\theta) \).
Using the definition of \( \operatorname{Cosh}^{-1}(x) \) with \( x = \sec\theta \): \[ \operatorname{Cosh}^{-1}(\sec\theta) = \ln(\sec\theta + \sqrt{\sec^2\theta-1}) \] Recall the trigonometric identity \( \sec^2\theta - 1 = \tan^2\theta \): \[ \operatorname{Cosh}^{-1}(\sec\theta) = \ln(\sec\theta + \sqrt{\tan^2\theta}) \] \[ = \ln(\sec\theta + |\tan\theta|) \] For the equality to hold (i.e., \( \ln(\sec\theta + \tan\theta) \)), we must assume that \( \tan\theta \ge 0 \).
This assumption is typically made in such problems where a single-valued answer is expected, and it aligns with the domain requirements for \( \operatorname{Cosh}^{-1}(\sec\theta) \) (where \( \sec\theta \ge 1 \), implying \( \cos\theta > 0 \), which in turn implies \( \tan\theta \ge 0 \) in the principal value ranges).
Thus, \( \operatorname{Tanh}^{-1}(\sin\theta) = \ln(\sec\theta + \tan\theta) \) matches \( \operatorname{Cosh}^{-1}(\sec\theta) \).
The final answer is \( \boxed{\operatorname{Cosh}^{-1}(\sec\theta)} \).
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?
Find the number of triangles in the given figure.
A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius \( r \) cm as shown in the figure. The side of the dodecagon is \( d \) cm. All the triangles (numbered 1 to 12 in the figure) are used to form squares of side \( r \) cm, and each numbered triangle is used only once to form a square. The number of squares that can be formed and the number of triangles required to form each square, respectively, are: