Step 1: Consider an electric dipole consisting of charges \( +q \) and \( -q \) separated by a distance \( 2a \). The dipole moment is:
\[
\vec{p} = q \cdot 2a
\]
Step 2: The electric field at an equatorial point (perpendicular bisector) of the dipole at a distance \( r \) from the center is given by the formula:
\[
E_{\text{equatorial}} = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{p}{(r^2 + a^2)^{3/2}}
\]
Step 3: For large distances (\( r \gg a \)):
\[
E_{\text{equatorial}} \approx \frac{1}{4 \pi \varepsilon_0} \cdot \frac{p}{r^3}
\]
\[
\boxed{E = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{p}{r^3}}
\]