A molecule has a zero dipole moment if it is symmetric, and the bond dipoles cancel each other out. Let us analyze each compound:
\(\text{H}_2\): Diatomic, nonpolar, symmetric. - Dipole moment = 0.
\(\text{CO}_2\): Linear molecule, symmetric. - Dipole moment = 0.
\(\text{BF}_3\): Planar triangular structure, symmetric. - Dipole moment = 0.
\(\text{CH}_4\): Tetrahedral geometry, symmetric. - Dipole moment = 0.
\(\text{SiF}_4\): Tetrahedral geometry, symmetric. - Dipole moment = 0.
\(\text{BeF}_2\): Linear molecule, symmetric. - Dipole moment = 0.
Molecules with nonzero dipole moments:
\(\text{HF}\): Polar molecule, asymmetric.
\(\text{H}_2\text{S}\): Bent structure, asymmetric.
\(\text{NH}_3\): Trigonal pyramidal structure, asymmetric.
\(\text{CHCl}_3\): Tetrahedral, but asymmetric due to \(\text{Cl}\).
\(\text{H}_2\text{O}\): Bent structure, asymmetric.
Conclusion: The compounds with zero dipole moment are:
\[\text{H}_2, \, \text{CO}_2, \, \text{BF}_3, \, \text{CH}_4, \, \text{SiF}_4, \, \text{BeF}_2.\]
The number of such compounds is:
\[6.\]
Final Answer: 6.
From the given following (A to D) cyclic structures, those which will not react with Tollen's reagent are : 
Compound 'P' undergoes the following sequence of reactions : (i) NH₃ (ii) $\Delta$ $\rightarrow$ Q (i) KOH, Br₂ (ii) CHCl₃, KOH (alc), $\Delta$ $\rightarrow$ NC-CH₃. 'P' is : 

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
