A molecule has a zero dipole moment if it is symmetric, and the bond dipoles cancel each other out. Let us analyze each compound:
\(\text{H}_2\): Diatomic, nonpolar, symmetric. - Dipole moment = 0.
\(\text{CO}_2\): Linear molecule, symmetric. - Dipole moment = 0.
\(\text{BF}_3\): Planar triangular structure, symmetric. - Dipole moment = 0.
\(\text{CH}_4\): Tetrahedral geometry, symmetric. - Dipole moment = 0.
\(\text{SiF}_4\): Tetrahedral geometry, symmetric. - Dipole moment = 0.
\(\text{BeF}_2\): Linear molecule, symmetric. - Dipole moment = 0.
Molecules with nonzero dipole moments:
\(\text{HF}\): Polar molecule, asymmetric.
\(\text{H}_2\text{S}\): Bent structure, asymmetric.
\(\text{NH}_3\): Trigonal pyramidal structure, asymmetric.
\(\text{CHCl}_3\): Tetrahedral, but asymmetric due to \(\text{Cl}\).
\(\text{H}_2\text{O}\): Bent structure, asymmetric.
Conclusion: The compounds with zero dipole moment are:
\[\text{H}_2, \, \text{CO}_2, \, \text{BF}_3, \, \text{CH}_4, \, \text{SiF}_4, \, \text{BeF}_2.\]
The number of such compounds is:
\[6.\]
Final Answer: 6.
Identify the correct orders against the property mentioned:
A. H$_2$O $>$ NH$_3$ $>$ CHCl$_3$ - dipole moment
B. XeF$_4$ $>$ XeO$_3$ $>$ XeF$_2$ - number of lone pairs on central atom
C. O–H $>$ C–H $>$ N–O - bond length
D. N$_2$>O$_2$>H$_2$ - bond enthalpy
Choose the correct answer from the options given below:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to: