A molecule has a zero dipole moment if it is symmetric, and the bond dipoles cancel each other out. Let us analyze each compound:
\(\text{H}_2\): Diatomic, nonpolar, symmetric. - Dipole moment = 0.
\(\text{CO}_2\): Linear molecule, symmetric. - Dipole moment = 0.
\(\text{BF}_3\): Planar triangular structure, symmetric. - Dipole moment = 0.
\(\text{CH}_4\): Tetrahedral geometry, symmetric. - Dipole moment = 0.
\(\text{SiF}_4\): Tetrahedral geometry, symmetric. - Dipole moment = 0.
\(\text{BeF}_2\): Linear molecule, symmetric. - Dipole moment = 0.
Molecules with nonzero dipole moments:
\(\text{HF}\): Polar molecule, asymmetric.
\(\text{H}_2\text{S}\): Bent structure, asymmetric.
\(\text{NH}_3\): Trigonal pyramidal structure, asymmetric.
\(\text{CHCl}_3\): Tetrahedral, but asymmetric due to \(\text{Cl}\).
\(\text{H}_2\text{O}\): Bent structure, asymmetric.
Conclusion: The compounds with zero dipole moment are:
\[\text{H}_2, \, \text{CO}_2, \, \text{BF}_3, \, \text{CH}_4, \, \text{SiF}_4, \, \text{BeF}_2.\]
The number of such compounds is:
\[6.\]
Final Answer: 6.
Identify the correct orders against the property mentioned:
A. H$_2$O $>$ NH$_3$ $>$ CHCl$_3$ - dipole moment
B. XeF$_4$ $>$ XeO$_3$ $>$ XeF$_2$ - number of lone pairs on central atom
C. O–H $>$ C–H $>$ N–O - bond length
D. N$_2$>O$_2$>H$_2$ - bond enthalpy
Choose the correct answer from the options given below:

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).