Step 1: Understanding the Concept:
This problem deals with loan amortization and calculating equal periodic installments (annuities). The present value of all future installments must equal the principal loan amount.
Step 2: Key Formula or Approach:
The formula for the present value (P) of an ordinary annuity (a series of equal payments E) is:
\[ P = E \left[ \frac{1 - (1+r)^{-n}}{r} \right] \]
where \(r\) is the interest rate per period and \(n\) is the number of periods. We can rearrange this to find the installment amount E:
\[ E = P \left[ \frac{r}{1 - (1+r)^{-n}} \right] \]
Step 3: Detailed Explanation:
Given: Loan Principal \(P = 1,00,000\), Annual interest rate \(r = 15% = 0.15\).
Case 1: Two yearly instalments (\(n=2\))
The instalment amount is \(x\).
\[ x = 1,00,000 \left[ \frac{0.15}{1 - (1+0.15)^{-2}} \right] = 1,00,000 \left[ \frac{0.15}{1 - (1.15)^{-2}} \right] \]
\[ 1.15^2 = 1.3225 \]
\[ x = 1,00,000 \left[ \frac{0.15}{1 - \frac{1}{1.3225}} \right] = 1,00,000 \left[ \frac{0.15}{\frac{1.3225 - 1}{1.3225}} \right] \]
\[ x = 1,00,000 \left[ \frac{0.15 \times 1.3225}{0.3225} \right] = 1,00,000 \left[ \frac{0.198375}{0.3225} \right] \]
\[ x \approx 1,00,000 \times 0.615116 \approx 61511.6 \]
Case 2: Three yearly instalments (\(n=3\))
The instalment amount is \(y\).
\[ y = 1,00,000 \left[ \frac{0.15}{1 - (1+0.15)^{-3}} \right] = 1,00,000 \left[ \frac{0.15}{1 - (1.15)^{-3}} \right] \]
\[ 1.15^3 = 1.15 \times 1.3225 = 1.520875 \]
\[ y = 1,00,000 \left[ \frac{0.15}{1 - \frac{1}{1.520875}} \right] = 1,00,000 \left[ \frac{0.15}{\frac{1.520875 - 1}{1.520875}} \right] \]
\[ y = 1,00,000 \left[ \frac{0.15 \times 1.520875}{0.520875} \right] = 1,00,000 \left[ \frac{0.22813125}{0.520875} \right] \]
\[ y \approx 1,00,000 \times 0.437972 \approx 43797.2 \]
Step 4: Final Answer:
The approximate difference between \(x\) and \(y\) is:
\[ x - y \approx 61511.6 - 43797.2 = 17714.4 \]
The closest option is 17714.