Using Newton-Raphson’s method for solving \( f(x) = 0 \), the iterative formula is:
\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\]
Let
\[
f(x) = \frac{1}{x^2} - N
\]
Then,
\[
f'(x) = -\frac{2}{x^3}
\]
Substituting in the formula:
\[
x_{n+1} = x_n - \frac{\frac{1}{x_n^2} - N}{-2/x_n^3}
\]
Simplify:
\[
= x_n + \frac{x_n (1 - N x_n^2)}{2}
\]
Simplify further:
\[
= \frac{1}{2} \left( x_n + \frac{1}{N x_n} \right)
\]