Negation of the Boolean statement (p ∨ q) ⇒ ((~ r) ∨ p) is equivalent to
The correct answer is (C) : (~p) ∧ q ∧ r
p ∨ q ⇒ (~ r ∨ p)
≡ ~ (p ∨ q) ∨ (~ r ∨ p)
≡ (~ p ∧ ~ q) ∨ (p ∨ ~ r)
≡ [(~ p ∨ p) ∧ (~ q ∨ p)] ∨ ~ r
≡ (~ q ∨ p) ∨ ~ r
Its negation is ~ p ∧ q ∧ r.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Mathematical reasoning or the principle of mathematical reasoning is a part of mathematics where we decide the truth values of the given statements. These reasoning statements are common in most competitive exams like JEE and the questions are extremely easy and fun to solve.
Mathematically, reasoning can be of two major types such as: