मुक्त पतन म्हणजे काय ? ते केव्हा शक्य होते ?
Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 

In the following figure \(\triangle\) ABC, B-D-C and BD = 7, BC = 20, then find \(\frac{A(\triangle ABD)}{A(\triangle ABC)}\). 
The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\)) 
Activity :
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14.
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.