Let Mr. Pinto's initial capital be \( C \) dollars.
Total interest after \( t \) years is:
\[ \text{Interest} = \left( \frac{1}{5}C \cdot 0.06 \cdot t \right) + \left( \frac{1}{3}C \cdot 0.10 \cdot t \right) + \left( \frac{11}{15}C \cdot 0.01 \cdot t \right) \]
This should be at least equal to the initial capital \( C \):
\[ \left( \frac{1}{5} \cdot 0.06 + \frac{1}{3} \cdot 0.10 + \frac{11}{15} \cdot 0.01 \right)t \geq 1 \]
Compute each term: \[ \frac{1}{5} \cdot 0.06 = 0.012,\quad \frac{1}{3} \cdot 0.10 = 0.0333,\quad \frac{11}{15} \cdot 0.01 \approx 0.0073 \]
Adding them up: \[ 0.012 + 0.0333 + 0.0073 = 0.0526 \]
So the inequality becomes: \[ 0.0526t \geq 1 \Rightarrow t \geq \frac{1}{0.0526} \approx 19.01 \]
Since \( t \) must be a whole number, the minimum number of years is: \[ \boxed{20 \text{ years}} \]
When $10^{100}$ is divided by 7, the remainder is ?