The wavelength $\lambda$ of light is related to its speed and frequency by:
\[
\lambda = \frac{v}{f}.
\]
For light in air:
\[
v_{\text{air}} = c = 3.0 \times 10^8 \, \text{m/s}.
\]
The wavelength in air is:
\[
\lambda_{\text{air}} = \frac{v_{\text{air}}}{f} = \frac{3.0 \times 10^8}{5.0 \times 10^{14}} = 600 \, \text{nm}.
\]
% Option
(i) The wavelength of the reflected light remains the same as in air:
\[
\boxed{\lambda_{\text{reflected}} = 600 \, \text{nm}}.
\]
% Option
(ii) For refracted light in the medium:
\[
v_{\text{medium}} = \frac{v_{\text{air}}}{n} = \frac{3.0 \times 10^8}{1.5} = 2.0 \times 10^8 \, \text{m/s}.
\]
The wavelength in the medium is:
\[
\lambda_{\text{refracted}} = \frac{v_{\text{medium}}}{f} = \frac{2.0 \times 10^8}{5.0 \times 10^{14}} = 400 \, \text{nm}.
\]
Thus:
\[
\boxed{\lambda_{\text{refracted}} = 400 \, \text{nm}}.
\]