Let the speeds of Mira and Amal be \( M \) and \( A \) rounds per minute respectively.
\[ (A - M) \times 45 = 3 \Rightarrow A - M = \frac{1}{15} \]
\[ (A + M) \times 3 = 1 \Rightarrow A + M = \frac{1}{3} \]
Now solving the two equations:
\[ A - M = \frac{1}{15} \quad \text{(1)} \\ \] \[ A + M = \frac{1}{3} \quad \text{(2)} \]
Add (1) and (2):
\[ 2A = \frac{1}{15} + \frac{1}{3} = \frac{1 + 5}{15} = \frac{6}{15} = \frac{2}{5} \Rightarrow A = \frac{1}{5} \]
Substitute back into equation (2):
\[ \frac{1}{5} + M = \frac{1}{3} \Rightarrow M = \frac{1}{3} - \frac{1}{5} = \frac{5 - 3}{15} = \frac{2}{15} \]
So, Mira walks \( \frac{2}{15} \) rounds per minute.
In one hour (i.e., 60 minutes), Mira walks: \[ 60 \times \frac{2}{15} = 8 \text{ rounds} \]
Answer: 8 rounds
When $10^{100}$ is divided by 7, the remainder is ?