Observe the following reactions:
\( AB(g) + 25 H_2O(l) \rightarrow AB(H_2S{O_4}) \quad \Delta H = x \, {kJ/mol}^{-1} \)
\( AB(g) + 50 H_2O(l) \rightarrow AB(H_2SO_4) \quad \Delta H = y \, {kJ/mol}^{-1} \)
The enthalpy of dilution, \( \Delta H_{dil} \) in kJ/mol\(^{-1}\), is:
A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is : 
A constant voltage of 50 V is maintained between the points A and B of the circuit shown in the figure. The current through the branch CD of the circuit is :
The current passing through the battery in the given circuit, is: 
Given below are two statements:
Statement I: The primary source of energy in an ecosystem is solar energy.
Statement II: The rate of production of organic matter during photosynthesis in an ecosystem is called net primary productivity (NPP).
In light of the above statements, choose the most appropriate answer from the options given below:
The rate of a chemical reaction is defined as the change in concentration of any one of the reactants or products per unit time.
Consider the reaction A → B,
Rate of the reaction is given by,
Rate = −d[A]/ dt=+d[B]/ dt
Where, [A] → concentration of reactant A
[B] → concentration of product B
(-) A negative sign indicates a decrease in the concentration of A with time.
(+) A positive sign indicates an increase in the concentration of B with time.
There are certain factors that determine the rate of a reaction: