To calculate the mean residence time, we integrate the expression for \( t_m \) using the given distribution \( E(t) \):
\[
t_m = \int_0^{0.5} t (1 - 2t) \, dt + \int_{0.5}^{\infty} t (0) \, dt
\]
The second integral is zero because \( E(t) = 0 \) for \( t > 0.5 \).
Now, solving the first integral:
\[
t_m = \int_0^{0.5} t (1 - 2t) \, dt
\]
\[
t_m = \int_0^{0.5} (t - 2t^2) \, dt
\]
\[
t_m = \left[ \frac{t^2}{2} - \frac{2t^3}{3} \right]_0^{0.5}
\]
Substituting the limits:
\[
t_m = \left( \frac{(0.5)^2}{2} - \frac{2(0.5)^3}{3} \right) - (0)
\]
\[
t_m = \left( \frac{0.25}{2} - \frac{2 \times 0.125}{3} \right)
\]
\[
t_m = 0.125 - 0.0833 = 0.0417 \, \text{units of time}
\]
Thus, the mean residence time is \( t_m = 0.0417 \) units of time.