Step 1: Simplify constraints.
\[
9x + 12y \leq 180 \;\;\Rightarrow\;\; 3x + 4y \leq 60 (\text{same as 2nd constraint})
\]
So effective constraints are:
\[
3x + 4y \leq 60, x + 3y \leq 30, x \geq 0, \; y \geq 0
\]
Step 2: Find corner points.
- When $x=0$: $4y \leq 60 $\Rightarrow$ y \leq 15$, and $3y \leq 30 $\Rightarrow$ y \leq 10$. So feasible point $(0,10)$.
- When $y=0$: $3x \leq 60 $\Rightarrow$ x \leq 20$, and $x \leq 30$. So feasible point $(20,0)$.
- Intersection of $3x+4y=60$ and $x+3y=30$:
\[
3x+4y=60 (1), x+3y=30 (2)
\]
From (2), $x=30-3y$. Substitute into (1):
\[
3(30-3y) + 4y = 60 \;\;\Rightarrow\;\; 90-9y+4y=60 \;\;\Rightarrow\;\; -5y=-30 \;\;\Rightarrow\;\; y=6, \; x=12
\]
So intersection point $(12,6)$.
Step 3: Evaluate objective function at feasible points.
\[
Z = 8000x+12000y
\]
- At $(0,0)$: $Z=0$
- At $(20,0)$: $Z=160000$
- At $(0,10)$: $Z=120000$
- At $(12,6)$: $Z=8000(12)+12000(6)=96000+72000=168000$
Step 4: Conclusion.
Maximum value of $Z$ is
\[
\boxed{168000 \;\;\text{at}\;\; (x,y)=(12,6)}
\]
Arrange the following steps for solving Simplex linear programming problems in the correct order: