Match the quantities in Group 1 with their units in Group 2
Group 1 | Group 2 |
---|---|
P) Thermal conductivity | I) \( \text{W·m}^{-2}\text{K}^{-1} \) |
Q) Convective heat transfer coefficient | II) \( \text{W·m}^{-1}\text{K}^{-1} \) |
R) Stefan-Boltzmann constant | III) \( \text{W·K}^{-1} \) |
S) Heat capacity rate | IV) \( \text{W·m}^{-2}\text{K}^{-4} \) |
Step 1: Units of thermal conductivity. \[ k: \;\; \frac{\text{W}}{\text{mK}} = \text{Wm}^{-1}\text{K}^{-1}. \] So, \( P \;\rightarrow\; II \).
Step 2: Units of convective heat transfer coefficient. Defined as: \[ q = hA\Delta T. \] Hence, \[ h: \;\; \frac{\text{W}}{\text{m}^2 \text{K}} = \text{Wm}^{-2}\text{K}^{-1}. \] So, \( Q \;\rightarrow\; I \).
Step 3: Units of Stefan–Boltzmann constant. From: \[ q = \sigma T^4, \] we get: \[ \sigma: \;\; \frac{\text{W}}{\text{m}^2 \text{K}^4} = \text{Wm}^{-2}\text{K}^{-4}. \] So, \( R \;\rightarrow\; IV \).
Step 4: Units of heat capacity rate. Defined as: \[ C = \dot m c_p, \] which has units: \[ \frac{\text{J}}{\text{Ks}} = \text{WK}^{-1}. \] So, \( S \;\rightarrow\; III \).
Correct Matching: \[ \boxed{ P \;\rightarrow\; II, \quad Q \;\rightarrow\; I, \quad R \;\rightarrow\; IV, \quad S \;\rightarrow\; III } \] Option (A)
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
(Type of Fouling) | (Fouling Mechanism) | ||
A | Precipitation | IV | Precipitation of dissolved substances... |
B | Freezing | III | Solidification of Liquid components... |
C | Particulate | I | Accumulation of fine particles suspended... |
D | Corrosion | II | Heat transfer surface reacts with ambient... |
Identify the evaporator
Is there any good show __________ television tonight? Select the most appropriate option to complete the above sentence.
Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]