| Column I | Column II |
|---|---|
| (P) Associated Legendre polynomials | (III) Angular part of H atom ($Y_\ell^m(\theta,\phi)$) |
| (Q) Hermite polynomials | (I) Harmonic oscillator ($\psi_n(x)\propto e^{-x^2/2}H_n(x)$) |
| (R) Associated Laguerre polynomials | (IV) Radial part of H atom ($R_{n\ell}(r)\propto e^{-r/na_0}L_{n-\ell-1}^{2\ell+1}\!\left(\tfrac{2r}{na_0}\right)$) |
| (S) Trigonometric functions | (II) Particle in a box model ($\psi_n(x)=\sin\!\left(\tfrac{n\pi x}{L}\right)$) |
\(1\,\text{g}\) of \( \mathrm{AB_2} \) is dissolved in \(50\,\text{g}\) of a solvent such that \( \Delta T_f = 0.689\,\text{K} \). When \(1\,\text{g}\) of \( \mathrm{AB} \) is dissolved in \(50\,\text{g}\) of the same solvent, \( \Delta T_f = 1.176\,\text{K} \). Find the molar mass of \( \mathrm{AB_2} \). Given \( K_f = 5\,\text{K kg mol}^{-1} \). \((\textit{Report to nearest integer.})\) Both \( \mathrm{AB_2} \) and \( \mathrm{AB} \) are non-electrolytes.