Step 1: Calculate moles of calcium: \[ \text{Moles of Ca} = \frac{14}{40} = 0.35\,\text{mol} \]
Step 2: From the balanced equation: \[ 1\,\text{mol Ca} \rightarrow 1\,\text{mol CaCl}_2 + 1\,\text{mol H}_2 \] So, \[ \text{Moles of } {CaCl2} = 0.35\,\text{mol} \] \[ \text{Moles of } \{H2} = 0.35\text{mol} \]
Step 3: Mass of \( {CaCl2} \): \[ \text{Molar mass of } {CaCl2} = 40 + 2(35.5) = 111\,\text{g mol}^{-1} \] \[ \text{Mass} = 0.35 \times 111 = 38.8,\text{g} \]
Step 4: Volume of hydrogen gas at STP: \[ V = 0.35 \times 22.4 = 7.84\,\text{L} \]
Step 5: Hence, option (D) is incorrect.
\(1\,\text{g}\) of \( \mathrm{AB_2} \) is dissolved in \(50\,\text{g}\) of a solvent such that \( \Delta T_f = 0.689\,\text{K} \). When \(1\,\text{g}\) of \( \mathrm{AB} \) is dissolved in \(50\,\text{g}\) of the same solvent, \( \Delta T_f = 1.176\,\text{K} \). Find the molar mass of \( \mathrm{AB_2} \). Given \( K_f = 5\,\text{K kg mol}^{-1} \). \((\textit{Report to nearest integer.})\) Both \( \mathrm{AB_2} \) and \( \mathrm{AB} \) are non-electrolytes.
