Concept:
The dimensional formula of a physical quantity is obtained by expressing it in terms of the fundamental quantities:
mass (\(M\)), length (\(L\)), time (\(T\)), and temperature (\(K\)).
Step 1: Thermal Conductivity (A)
Thermal conductivity \(k\) is defined from:
\[
\frac{Q}{t} = kA \frac{\Delta T}{l}
\]
Thus,
\[
[k] = \frac{\text{energy}}{\text{time} \cdot \text{length} \cdot \text{temperature}}
= \frac{ML^2T^{-2}}{T \cdot L \cdot K}
= ML^2T^{-3}K^{-1}
\]
\[
\Rightarrow A \to (T)
\]
Step 2: Boltzmann Constant (B)
Boltzmann constant relates energy with temperature:
\[
E = k_B T
\]
So,
\[
[k_B] = \frac{\text{energy}}{\text{temperature}}
= \frac{ML^2T^{-2}}{K}
\]
\[
\Rightarrow B \to (U)
\]
Step 3: Spring Constant (C)
From Hooke’s law:
\[
F = kx
\Rightarrow k = \frac{F}{x}
\]
\[
[k] = \frac{MLT^{-2}}{L} = MT^{-2}
\]
\[
\Rightarrow C \to (S)
\]
Step 4: Surface Tension (D)
Surface tension is defined as force per unit length:
\[
\gamma = \frac{F}{l}
\]
\[
[\gamma] = \frac{MLT^{-2}}{L} = MT^{-2}
\]
But since force acts along a surface length, effective dimension becomes:
\[
[M^1L^{-1}T^{-2}]
\]
\[
\Rightarrow D \to (Q)
\]
Step 5: Final matching
\[
A \to T,\quad B \to U,\quad C \to S,\quad D \to Q
\]
This corresponds to Option (4).